What interesting discoveries will you find when you start digging into your learning data? Maybe you'll get a clearer picture of what’s really happening with learning programs. Or, maybe you'll find answers to questions you didn’t even know you should be asking.
Uncover surprising L&D insights.
When evaluating learning data, you might have specific questions in mind, such as:
- Did people learn from learning experiences?
- Did they apply that learning in the workplace?
- Which learning materials are being used the most?
- How active are different groups of learners?
While exploring these questions, though, you might happen upon unexpected insights that highlight opportunities and/or challenges that you didn’t even know existed. Take, for instance, the following examples based on real events.
Example 1: Gaming the SystemA company has a learning program in which learners can test out of certain learning activities. Learners get one attempt to pass a pretest and don’t have to complete the associated learning activity if they pass the test. Those who fail have to complete the learning activity and then take a post-test—which doesn’t have a target pass mark and can be retaken by learners as many times as they like.
The company uses heatmap reports to visualize data about these tests and activities. The reports on these tests display learners’ first scores for the pretest and posttest, their first passing scores, and their overall highest scores. Because learners are supposed to start with the pretest, their first passing scores should be either on the pretest or their first attempts at the posttest (if they failed the pretest).
While looking at the test result data, it’s discovered that some learners’ first passing scores were from their posttest scores—even though they passed the pretest on their first attempts.
This isn’t a data error; rather, some learners were starting with the posttest, repeating it until they figured out the answers, and then taking the pretest. As a result, these learners appeared to pass the pre-test, which allowed them to skip the learning activity. In other words, they were cheating!
In this example, the heatmap reporting feature wasn’t designed to catch learners gaming the system, but having the ability to clearly view data revealed what was actually happening. Now, the company can:
- decide if this “cheating” method is an acceptable way for people to learn the material while monitoring learners who take this approach, or
- change its LMS to lock down the posttest until after the pretest has been taken.
Recommended Reading
A company wanted to compile a report of what learners were searching for on its portal. I completed the report and was surprised to see that the top result was nothing, nada, zip—an empty search box. In fact, this had more than 10 times as many hits as the next result. I checked the underlying data, and, sure enough, discovered that the majority of searches were for nothing at all.
After sharing this report with the company, we discovered a page on its portal that recommended next steps to learners. But the only way to access this feature required learners to leave the search box empty and then click the search button.
Until that point, the company wasn’t sure if this feature was being used; so they were delighted to find that so many people were, in fact, using it.
Recommended Resources
What Can We Learn?
Sometimes learners behave in ways we didn’t imagine, and sometimes our data gives us unexpected insights that can be invaluable. By collecting, exploring, and visualizing our learning and performance data, we can get a clearer picture of what’s really happening. We can answer our primary set of questions and maybe even be surprised by answers to the questions we didn’t even think to ask.
About the author
As a co-author of xAPI, Andrew has been instrumental in revolutionizing the way we approach data-driven learning design. With his extensive background in instructional design and development, he’s an expert in crafting engaging learning experiences and a master at building robust learning platforms in both corporate and academic environments. Andrew’s journey began with a simple belief: learning should be meaningful, measurable, and, most importantly, enjoyable. This belief has led him to work with some of the industry’s most innovative organizations and thought leaders, helping them unlock the true potential of their learning strategies. Andrew has also shared his insights at conferences and workshops across the globe, empowering others to harness the power of data in their own learning initiatives.
Subscribe to our blog